翻訳と辞書
Words near each other
・ De Brave Hendrik
・ De Bray
・ De Brazza's monkey
・ De Breves River
・ De Brevitate Vitae (Seneca)
・ De brief voor de Koning
・ De Broekmolen, Broeksterwoude
・ De Broglie–Bohm theory
・ De Broodfabriek
・ De Broqueville government in exile
・ De Brouckère metro station
・ De brug
・ De Bruijn
・ De Bruijn graph
・ De Bruijn index
De Bruijn notation
・ De Bruijn sequence
・ De Bruijn torus
・ De Bruijn's theorem
・ De Bruijn–Erdős theorem
・ De Bruijn–Erdős theorem (graph theory)
・ De Bruijn–Erdős theorem (incidence geometry)
・ De Bruijn–Newman constant
・ De Bruin
・ De bruut
・ De Bruyn
・ De Bruyne
・ De Bruyne Snark
・ De Bruyère C 1
・ De Buddy's


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Bruijn notation : ウィキペディア英語版
De Bruijn notation

In mathematical logic, the De Bruijn notation is a syntax for terms in the λ calculus invented by the Dutch mathematician Nicolaas Govert de Bruijn. It can be seen as a reversal of the usual syntax for the λ calculus where the argument in an application is placed next to its corresponding binder in the function instead of after the latter's body.
== Formal definition ==

Terms (M, N, \ldots) in the De Bruijn notation are either variables (v), or have one of two ''wagon'' prefixes. The ''abstractor wagon'', written (), corresponds to the usual λ-binder of the λ calculus, and the ''applicator wagon'', written (M), corresponds to the argument in an application in the λ calculus.
:M,N,... ::=\ v\ |\ ()\;M\ |\ (M)\;N
Terms in the traditional syntax can be converted to the De Bruijn notation by defining an inductive function \mathcal for which:

\begin
\mathcal(v) &= v \\
\mathcal(\lambda v.\ M) &= ()\;\mathcal(M) \\
\mathcal(M\;N) &= (\mathcal(N))\mathcal(M).
\end

All operations on λ-terms commute with respect to the \mathcal translation. For example, the usual β-reduction,
:(\lambda v.\ M)\;N\ \ \longrightarrow_\beta\ \ M(:= N )
in the De Bruijn notation is, predictably,
:(N)\;()\;M\ \ \longrightarrow_\beta\ \ M(:= N ).
A feature of this notation is that abstractor and applicator wagons of β-redexes are paired like parentheses. For example, consider the stages in the β-reduction of the term (M)\;(N)\;()\;(P)\;()\;()\;(Q)\;z, where the redexes are underlined:〔 The example is from page 384.〕

\begin
(M)\;\underline\;(P)\;()\;()\;(Q)\;z
&
(M)\;\underline\;()\;(Q())\;z \\
&
\underline\;(Q,w:=M])\;z.
\end

Thus, if one views the applicator as an open paren ('(') and the abstractor as a close bracket (']'), then the pattern in the above term is '((](]]'. De Bruijn called an applicator and its corresponding abstractor in this interpretation ''partners'', and wagons without partners ''bachelors''. A sequence of wagons, which he called a ''segment'', is ''well balanced'' if all its wagons are partnered.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Bruijn notation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.